Spike train entropy-rate estimation using hierarchical Dirichlet process priors

نویسندگان

  • Karin C. Knudson
  • Jonathan W. Pillow
چکیده

Entropy rate quantifies the amount of disorder in a stochastic process. For spiking neurons, the entropy rate places an upper bound on the rate at which the spike train can convey stimulus information, and a large literature has focused on the problem of estimating entropy rate from spike train data. Here we present Bayes least squares and empirical Bayesian entropy rate estimators for binary spike trains using hierarchical Dirichlet process (HDP) priors. Our estimator leverages the fact that the entropy rate of an ergodic Markov Chain with known transition probabilities can be calculated analytically, and many stochastic processes that are non-Markovian can still be well approximated by Markov processes of sufficient depth. Choosing an appropriate depth of Markov model presents challenges due to possibly long time dependencies and short data sequences: a deeper model can better account for long time dependencies, but is more difficult to infer from limited data. Our approach mitigates this difficulty by using a hierarchical prior to share statistical power across Markov chains of different depths. We present both a fully Bayesian and empirical Bayes entropy rate estimator based on this model, and demonstrate their performance on simulated and real neural spike train data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian entropy estimation for binary spike train data using parametric prior knowledge

Shannon’s entropy is a basic quantity in information theory, and a fundamental building block for the analysis of neural codes. Estimating the entropy of a discrete distribution from samples is an important and difficult problem that has received considerable attention in statistics and theoretical neuroscience. However, neural responses have characteristic statistical structure that generic en...

متن کامل

Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities

We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general ...

متن کامل

Bayesian estimation of discrete entropy with mixtures of stick-breaking priors

We consider the problem of estimating Shannon’s entropyH in the under-sampled regime, where the number of possible symbols may be unknown or countably infinite. Dirichlet and Pitman-Yor processes provide tractable prior distributions over the space of countably infinite discrete distributions, and have found major applications in Bayesian non-parametric statistics and machine learning. Here we ...

متن کامل

Trial-Shuffle Method for Inferring Information Transfer in Spike-train Data Sets

Understanding information processing in the brain requires the ability to determine the functional connectivity between the different regions of the brain. We present a method using transfer entropy to extract this flow of information between brain regions from spike-train data commonly taken in neurological experiments. Transfer entropy is a statistical measure based in information theory that...

متن کامل

Information through a Spiking Neuron

While it is generally agreed that neurons transmit information about their synaptic inputs through spike trains, the code by which this information is transmitted is not well understood. An upper bound on the information encoded is obtained by hypothesizing that the precise timing of each spike conveys information. Here we develop a general approach to quantifying the information carried by spi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013